
Necessary and sufficient conditions for existence of bound states in a central potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 9907

(http://iopscience.iop.org/0305-4470/36/38/308)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 9907–9913 PII: S0305-4470(03)64381-7

Necessary and sufficient conditions for existence of
bound states in a central potential

Fabian Brau

Service de Physique Générale et de Physique des Particules Elémentaires, Groupe de Physique
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Abstract
We obtain, using the Birman–Schwinger method, a series of necessary
conditions for the existence of at least one bound state applicable to arbitrary
central potentials in the context of nonrelativistic quantum mechanics. These
conditions yield a monotonic series of lower limits on the ‘critical’ value of
the strength of the potential (for which a first bound state appears) which
converges to the exact critical strength. We also obtain a sufficient condition
for the existence of bound states in a central monotonic potential which yield
an upper limit on the critical strength of the potential.

PACS numbers: 03.65.−w, 03.65.Ge

1. Introduction

The problem of finding upper and lower limits on the number of bound states of a given
potential has become a classical problem since the pioneer works of Jost and Pais in 1951
[1] and Bargmann in 1952 [2]. They obtained, for the first time, a necessary condition for
the existence of bound states in a central potential which can be obtained from the following
upper limit on the number of �-wave bound states (setting N� to 1):

N� � 1

2� + 1

∫ ∞

0
dr r|V −(r)|. (1)

In this inequality, V −(r) is the negative part of the potential obtained by setting its positive part
to zero and � is the angular momentum. Note that we use the standard quantum-mechanical
units such as h̄ = 2m = 1, where m is the mass of the particle. This upper limit (1), called the
Bargmann–Schwinger upper limit in the literature, was the starting point of intensive studies
and a fairly large number of upper and lower limits on the number of bound states for various
classes of potentials was found, see for example [3–21].
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An important theorem for classifying these results was found by Chadan [8] and gives the
asymptotic behaviour of the number of bound states as the strength, g, of the central potential
goes to infinity:

N ≈ g1/2

π

∫ ∞

0
dr v(r)1/2 as g → ∞ (2)

where the symbol ≈ means asymptotic equality and V −(r) = −gv(r). This result implies
that any upper and lower limit which could yield cogent results should behave asymptotically
as g1/2. More importantly, relation (2) gives the functional of the potential, that is to say
the coefficient in front of g1/2, that appears in the asymptotic behaviour. The upper limit
(1) is proportional to g instead of g1/2 and is not very stringent for strong potentials. Upper
and lower limits featuring the correct g1/2 dependence were first obtained in [7]. Upper and
lower limits featuring the correct asymptotic behaviour (2) were first derived in [19, 20]. In
practice, the asymptotic regime is reached very quickly when the strength of the potential is
large enough to bind two or three bound states.

The situation is completely different when one considers the transition between zero and
one bound state and in particular upper and lower limits on the ‘critical’ value of the strength
of the potential, gc, for which a first bound state appears. In this case, there is no theorem to
know in advance which limit yields the most stringent restriction on gc. It is then of interest to
obtain various limits, since the limit yielding the most stringent restriction changes from one
potential to another.

In section 2, we obtain a series of necessary conditions for the existence of at least one
bound state, applicable to arbitrary central potentials, which converges to the exact critical
strength. In section 3, we present a sufficient condition for the existence of bound states in
a central monotonic potential. In section 4, we perform several tests of the cogency of the
limits presented in this paper and we compare them to some previously known results and to
the exact results.

2. Necessary conditions

The necessary conditions for the existence of bound states derived in this section are obtained
with the help of a simple extension of the Birman–Schwinger method. Birman [3] and
Schwinger [4] have shown how to obtain an upper limit on the number of bound states once
the Green function of the kinetic energy operator of a wave equation is known. We recall
briefly the main line of the method applied to the radial Schrödinger equation for completeness;
for more details see the original articles [3, 4].

The Schrödinger equation for a central potential V (r) reads(
− d2

dr2
+

�(� + 1)

r2

)
u�(r) = (E − V (r))u�(r). (3)

The zero-energy Schrödinger equation can be written in the form of the following integral
equation:

u�(r) = −
∫ ∞

0
dr ′ g�(r, r

′)V (r ′)u�(r
′) (4)

where g�(r, r
′) is the Green function of the kinetic energy operator and is explicitly given by

g�(r, r
′) = 1

2� + 1
r�+1
< r−�

> (5)

where r< = min[r, r ′] and r> = max[r, r ′]. Since the purpose of the method is to obtain an
upper limit on the number of bound states, we can replace V (r) by −|V −(r)| where V −(r)
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is the negative part of the potential obtained by setting the positive part of the potential equal
to zero. Indeed, a decrease of the potential in some region must lower the energies of the
bound states and therefore cannot lessen their number. Moreover, we introduce the parameter
0 < λ � 1 by the substitution |V −(r)| → λ|V −(r)|. As λ increases from 0, we reach a critical
value, λ1, at which a bound state first appears with a vanishing binding energy, E = 0. With
further growth of λ, the energy of this state decreases until we reach a second critical value,
λ2, at which a second bound state appears and so on. When λ has attained the value unity and,
λN�

� 1 < λN�+1, there are N� bound states.
We now introduce, to obtain a symmetrical kernel, a new wavefunction as

φ�(r) = |V −(r)|1/2u�(r). (6)

Equation (4) becomes

λ−1φ�(r) =
∫ ∞

0
dr ′ K�(r, r

′)φ�(r
′) (7)

where K�(r, r
′) is given by

K�(r, r
′) = |V −(r)|1/2g�(r, r

′)|V −(r ′)|1/2. (8)

The kernel being positive, we have 0 < λ1 < λ2 < · · · < λN � 1 and 0 < λk < ∞
(λk denotes each eigenvalue of (7)). It is well known that the trace of the iterated kernels
equals the sum of the eigenvalues of the integral equation (7) as follows:

∞∑
k=1

1

(λk)n
=

∫ ∞

0
drK

(n)
� (r, r) (9)

where the iterated kernel K
(n)
� (s, t) is given by

K
(n)
� (s, t) =

∫ ∞

0
duK�(s, u)K

(n−1)
� (u, t) (10)

with

K
(1)
� (s, t) ≡ K�(s, t) (11)

and n = 1, 2, . . .. Now it is clear that the following inequalities hold:
∞∑

k=1

1

(λk)n
�

N�∑
k=1

1

(λk)n
> N� (12)

where N� is the number of �-wave bound states. From (9)–(12) we find that an upper limit on
the number of �-wave bound states of the Schrödinger equation is given by

N� <

∫ ∞

0
drK

(n)
� (r, r). (13)

In his article, Schwinger considers only the case n = 1 for equation (13) which yields the
Bargmann–Schwinger upper limit (1). Indeed, greater values of n would yield upper limits
which possess a worse dependence on the strength of the potential g than the upper limit
(1) and which would be very poor for strong potentials. But it appears that, as described in
section 4, the larger the value n the better the lower limit on the critical value of strength of
the potential.

The necessary conditions for the existence of �-wave bound states obtained from (13)
read, respectively, for n = 1, 2, 3:

1

2� + 1

∫ ∞

0
dr r |V −(r)| � 1 (14)
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2

(2� + 1)2

∫ ∞

0
dr1 r−2�

1 |V −(r1)|
∫ r1

0
dr2 r2�+2

2 |V −(r2)| � 1 (15)

6

(2� + 1)3

∫ ∞

0
dr1 r−2�

1 |V −(r1)|
∫ r1

0
dr2 r2|V −(r2)|

∫ r2

0
dr3 r2�+2

3 |V −(r3)| � 1 (16)

The improvements of the lower limits on gc implied by relations (15) and (16) over the lower
limit inferred from the well-known relation (14) are described in section 4 for a square-well
potential and an exponential potential.

Let us end this section by noting that the procedure employed here also yields a necessary
condition for the existence of bound states analogous to the condition obtained by Glaser
et al [10]

(p − 1)p−1�(2p)

(2� + 1)2p−1pp�2(p)

∫ ∞

0
dr r2p−1|V −(r)|p � 1 (17)

where p > 1 must be chosen to optimize the result. Indeed, for � > 0, we can use the n times
the Hölder inequality in relation (13) and taking n going to infinity (see [22] for more details)
we obtain [

(2� + 1)p(p − 1)

p2(� + 2)(� − 1) + 3p − 1

]p−1 ∫ ∞

0
dr r2p−1|V −(r)|p � 1. (18)

The constant in front of the integral is unfortunately always greater than the constant appearing
in the necessary condition (17), and relation (18) is thus always less stringent.

3. Sufficient condition

The sufficient condition is obtained with the help of a generalization of the comparison theorem
proved recently and where the comparison potentials intersect (theorem 7 of [23]). The new
theorem reads

Theorem. If two monotonic potentials V1(r) and V2(r) cross twice for r > 0 at
r = r1, r2 (r1 < r2) with

(i) V1(r) < V2(r) for 0 < r < r1 and

(ii)
∫ r2

0
dy [V1(y) − V2(y)]y2 � 0

then E1 < E2, where E1,2 are the ground states of the potentials V1,2(r).

As the comparison potential V2(r), we choose a simple square well

V2(r) = −V0θ(R − r) (19)

where θ(x) is the Heaviside function. Moreover, we choose this potential such that a zero-
energy bound state exists: V0R

2 = π2/4. This implies that the potential V1(r) possesses at
least one bound state. For this particular choice of V2(r) we have r2 = R. We write the
potential V1(r) in the form

V1(r) = −gs−2v(r/s, k) (20)

where k are the other parameters of the potential. The hypothesis (ii) above yields the following
upper bound g

up
c on the critical coupling constant gc

gup
c = π2

12

α∫ α

0 dy y2v(y, k)
(21)
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Table 1. Comparison between the exact values of the critical coupling constant gc of a square-well
potential for various values of � and the lower limits, glo

c � gc, obtained with relations (25)–(27),
the lower limit obtained with relation (13) with n = 4 and N� = 1 (calculated numerically) and
the lower limit obtained with formula (17) (with the optimal value of p).

� n = 1 n = 2 n = 3 n = 4 Equation (17) Exact

0 2 2.4495 2.4662 2.4672 2.3593 2.4674
1 6 9.4868 9.8132 9.8592 9.1220 9.8696
2 10 18.708 19.895 20.120 18.454 20.191
3 14 29.699 32.383 32.981 30.245 33.217
4 18 42.214 47.064 48.272 44.425 48.831
5 22 56.089 63.788 65.868 60.947 66.954

where α = R/s. The best restriction is obviously obtained with the value of α minimizing the
right-hand side of (21). The upper limit can thus be written as

gup
c = π2

12

1

α2v(α, k)
(22)

where α is the unique solution of∫ α

0
dy y2v(y, k) = α3v(α, k). (23)

Definition (23) of α has a simple geometric significance which implies that α >

max[y2v(y, k)].
Obviously, we have used a very particular comparison potential V2(r) to write a neat

formula for the upper limit on the critical coupling constant gc. In practice, a better upper
limit could be obtained by the use of a more appropriate comparison potential for which the
exact value of the critical coupling constant is known (and for which the conditions (i) and
(ii) apply!).

4. Tests

The first potential we consider to test the limits presented in the previous sections is a square-
well potential that we write in the convenient form

V (r) = −gR−2θ(1 − r/R). (24)

The sufficient condition (22)–(23), applicable only for � = 0, is saturated for this potential
(with α = 1) and thus leads to the exact result. The necessary conditions (14)–(16) give the
following lower limits:

glo
c = 2(2� + 1) (25)

glo
c = (2� + 1)[2(2� + 3)]1/2 (26)

glo
c = (2� + 1)[(2� + 3)(2� + 5)]1/3. (27)

The comparison between the new lower limits on gc, the limit (17) and the exact results is
reported in table 1 and shows that the new limits are quite cogent and converge quickly to the
exact result especially for small values of �.

The last test is performed with an exponential potential written as

V (r) = −gR−2 exp(−r/R). (28)
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Table 2. Comparison between the exact values of the critical coupling constant gc of an exponential
potential for various value of � and the lower limits, glo

c � gc, obtained with relations (25)–(27),
the lower limit obtained with relation (13) with n = 4 and N� = 1 (calculated numerically) and
the lower limit obtained with formula (17) (with the optimal value of p).

� n = 1 n = 2 n = 3 n = 4 Equation (17) Exact

0 1 1.4142 1.4422 1.4453 1.4383 1.4458
1 3 6.2700 6.8546 6.9913 7.0232 7.0491
2 5 13.145 15.257 15.804 16.277 16.313
3 7 21.593 26.265 27.364 29.218 29.259
4 9 31.363 39.616 41.296 45.849 45.893
5 11 42.297 55.120 57.480 66.173 66.219

For � = 0, the sufficient condition (22)–(23) leads to g
up
c = 2.118 while the exact result is

given by gc = z2
0

/
4 ∼= 1.4458 (z0 = 2.4048 is the first zero of the Bessel function J0(x)).

The upper limit is not very stringent for this potential because the comparison potential that
we choose (a square well) is very different from an exponential potential. The upper limit
yields more cogent results, for example, for a Wood–Saxon potential. For an exponential
potential a better upper limit can be obtained with the Calogero lower bound [5]: g

up
c =

1.677.
The comparison between the new lower limits on gc, the limit (17) and the exact result is

reported in table 2. The new lower limits on gc are quite cogent and converge quickly to the
exact results especially for small values of �, but this convergence is slower than in the case
of a square-well potential.
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